The Economic Complexity Index (ECI) and the Product Complexity Index (PCI) are, respectively, measures of the relative knowledge intensity of an economy or a product. ECI measures the knowledge intensity of an economy by considering the knowledge intensity of the products it exports. PCI measures the knowledge intensity of a product by considering the knowledge intensity of its exporters. This circular argument is mathematically tractable and can be used to construct relative measures of the knowledge intensity of economies and products (see methodology section for more details).
ECI has been validated as a relevant economic measure by showing its ability to predict future economic growth (see Hidalgo and Hausmann 2009), and explain international variations in income inequality (see Hartmann et al. 2017.
This page includes rankings using the Economic Complexity Index (ECI).
Showing
Year Range
Land | 2013 | 2014 | 2015 | 2016 | 2017 | ||
---|---|---|---|---|---|---|---|
1 |
![]() |
2.37352 | 2.31842 | 2.29751 | 2.27406 | 2.30938 | |
2 |
![]() |
2.05181 | 1.99456 | 2.15805 | 2.22117 | 2.24386 | |
3 |
![]() |
1.84608 | 1.81367 | 2.09809 | 2.08459 | 2.07537 | |
4 |
![]() |
1.71717 | 1.71171 | 1.746 | 1.79973 | 1.86534 | |
5 |
![]() |
1.75214 | 1.6459 | 1.92429 | 1.86277 | 1.80773 | |
6 |
![]() |
1.82762 | 1.90646 | 1.65462 | 1.69142 | 1.77613 | |
7 |
![]() |
1.43702 | 1.30167 | 1.8166 | 1.78168 | 1.75541 | |
8 |
![]() |
1.57477 | 1.49895 | 1.77048 | 1.72464 | 1.70679 | |
9 |
![]() |
1.53381 | 1.52129 | 1.67011 | 1.66047 | 1.6431 | |
10 |
![]() |
1.72767 | 1.64981 | 1.68354 | 1.63921 | 1.62894 | |
11 |
![]() |
1.45544 | 1.40296 | 1.6425 | 1.5493 | 1.53259 | |
12 |
![]() |
1.4359 | 1.41088 | 1.42499 | 1.44739 | 1.4319 | |
13 |
![]() |
1.28901 | 1.22044 | 1.35298 | 1.40903 | 1.40023 | |
14 |
![]() |
1.24155 | 1.15748 | 1.41803 | 1.40465 | 1.38964 | |
15 |
![]() |
1.43941 | 1.38229 | 1.35493 | 1.37204 | 1.38444 | |
16 |
![]() |
1.21794 | 1.20436 | 1.31956 | 1.34513 | 1.3402 | |
17 |
![]() |
1.22703 | 1.14081 | 1.23759 | 1.27878 | 1.3146 | |
18 |
![]() |
0.818227 | 0.756212 | 1.31596 | 1.28874 | 1.30343 | |
19 |
![]() |
0.995356 | 0.95349 | 1.23141 | 1.21947 | 1.1577 | |
20 |
![]() |
1.21525 | 1.24155 | 1.11574 | 1.10767 | 1.11743 | |
21 |
![]() |
0.846744 | 0.953003 | 1.15387 | 1.16038 | 1.09955 | |
22 |
![]() |
0.614676 | 0.667969 | 1.21126 | 1.19882 | 1.09466 | |
23 |
![]() |
0.817343 | 0.839266 | 1.10641 | 1.09864 | 1.09432 | |
24 |
![]() |
0.421886 | 0.411362 | 1.12953 | 1.08422 | 1.05671 | |
25 |
![]() |
0.810485 | 0.828817 | 0.938148 | 0.995461 | 0.971372 | |
26 |
![]() |
0.68394 | 0.752262 | 0.86561 | 0.843983 | 0.898422 | |
27 |
![]() |
0.048022 | 0.008439 | 0.855036 | 0.8547 | 0.852045 | |
28 |
![]() |
0.700457 | 0.701443 | 0.820536 | 0.80013 | 0.777415 | |
29 |
![]() |
-0.462099 | -0.369927 | 0.870754 | 0.819673 | 0.747155 | |
30 |
![]() |
0.689295 | 0.731427 | 0.836874 | 0.743585 | 0.743075 | |
31 |
![]() |
0.751166 | 0.787654 | 0.561038 | 0.620618 | 0.713669 | |
32 |
![]() |
0.87724 | 0.955651 | 0.590169 | 0.650521 | 0.711704 | |
33 |
![]() |
1.04036 | 1.16379 | 0.60941 | 0.642376 | 0.691307 | |
34 |
![]() |
0.673455 | 0.63807 | 0.667051 | 0.627923 | 0.675449 | |
35 |
![]() |
0.478137 | 0.431584 | 0.629273 | 0.649569 | 0.653054 | |
36 |
![]() |
0.822129 | 0.837178 | 0.657789 | 0.666972 | 0.623091 | |
37 |
![]() |
0.032264 | -0.151225 | 0.696066 | 0.648284 | 0.608252 | |
38 |
![]() |
1.26313 | 1.35236 | 0.426902 | 0.520167 | 0.594188 | |
39 |
![]() |
0.28954 | 0.268345 | 0.658954 | 0.619115 | 0.556886 | |
40 |
![]() |
0.361921 | 0.366673 | 0.520936 | 0.546327 | 0.532947 | |
41 |
![]() |
-0.096978 | -0.119421 | 0.59338 | 0.488085 | 0.483484 | |
42 |
![]() |
-0.41667 | -0.264365 | 0.322636 | 0.499297 | 0.396207 | |
43 |
![]() |
0.341858 | 0.477815 | 0.111666 | 0.220265 | 0.381087 | |
44 |
![]() |
0.562599 | 0.578374 | 0.32009 | 0.328647 | 0.372865 | |
45 |
![]() |
-0.134587 | -0.014696 | 0.254162 | 0.31413 | 0.359807 | |
46 |
![]() |
0.278113 | 0.290812 | 0.358694 | 0.327278 | 0.347659 | |
47 |
![]() |
-0.192079 | -0.204966 | 0.303549 | 0.28477 | 0.268797 | |
48 |
![]() |
0.433862 | 0.4937 | 0.255319 | 0.26363 | 0.258555 | |
49 |
![]() |
0.158575 | 0.093993 | 0.135131 | 0.231586 | 0.237988 | |
50 |
![]() |
-0.496513 | -0.502072 | 0.462111 | 0.360496 | 0.232335 | |
51 |
![]() |
-0.330617 | -0.349791 | 0.220677 | 0.177011 | 0.207869 | |
52 |
![]() |
0.287393 | 0.378481 | 0.133999 | 0.150909 | 0.175726 | |
53 |
![]() |
-0.234596 | -0.194463 | 0.0953318 | 0.11439 | 0.144356 | |
54 |
![]() |
-0.090032 | -0.362895 | 0.124122 | 0.0911202 | 0.128674 | |
55 |
![]() |
-0.210378 | -0.167862 | 0.113201 | 0.106201 | 0.125884 | |
56 |
![]() |
0.710402 | -0.558959 | 0.0789054 | 0.124958 | 0.119062 | |
57 |
![]() |
-1.49314 | -0.836979 | 0.25958 | 0.235139 | 0.11607 | |
58 |
![]() |
-0.961147 | -1.00924 | 0.0243757 | 0.157371 | 0.0883664 | |
59 |
![]() |
-0.816851 | -0.846322 | 0.0971997 | 0.146237 | 0.0863035 | |
60 |
![]() |
0.107992 | 0.177455 | 0.11624 | 0.0486427 | 0.0803256 | |
61 |
![]() |
-0.499261 | -0.532363 | 0.0316813 | 0.0611241 | 0.0443139 | |
62 |
![]() |
-0.219598 | -0.174918 | -0.0506048 | |||
63 |
![]() |
-0.419841 | -0.457954 | -0.13572 | -0.104348 | -0.0587891 | |
64 |
![]() |
-0.874505 | -0.774658 | -0.297732 | -0.0404026 | -0.0609077 | |
65 |
![]() |
-0.140418 | -0.010019 | -0.0543591 | -0.101439 | -0.149852 | |
66 |
![]() |
-0.934617 | -0.157821 | -0.158038 | |||
67 |
![]() |
-0.64931 | -0.787602 | -0.285952 | -0.258965 | -0.239734 | |
68 |
![]() |
-0.430339 | -0.33118 | -0.286814 | |||
69 |
![]() |
0.16411 | 0.214778 | -0.323836 | -0.323494 | -0.287626 | |
70 |
![]() |
-0.323051 | -0.216515 | -0.39802 | -0.379236 | -0.290303 | |
71 |
![]() |
-0.160233 | -0.102013 | -0.382548 | -0.359668 | -0.305644 | |
72 |
![]() |
-0.488663 | -0.341403 | -0.376617 | -0.346329 | -0.319753 | |
73 |
![]() |
-0.145168 | -0.070683 | -0.518145 | -0.491815 | -0.336211 | |
74 |
![]() |
-0.406432 | -0.40546 | -0.422355 | -0.382253 | -0.363374 | |
75 |
![]() |
-0.274702 | -0.379871 | ||||
76 |
![]() |
-0.019913 | -0.103664 | -0.388113 | -0.475939 | -0.464417 | |
77 |
![]() |
-0.379853 | -0.383244 | -0.512514 | |||
78 |
![]() |
-0.731336 | -0.544915 | -0.219831 | -0.367271 | -0.514087 | |
79 |
![]() |
-0.744196 | -0.721723 | -0.498182 | -0.583953 | -0.518687 | |
80 |
![]() |
-0.666129 | -0.638339 | -0.579654 | |||
81 |
![]() |
-1.01445 | -0.956349 | -0.645699 | -0.565693 | -0.598962 | |
82 |
![]() |
-0.505798 | -0.412311 | -0.555447 | -0.57015 | -0.616793 | |
83 |
![]() |
-0.231462 | -0.129961 | -0.707104 | -0.669703 | -0.623084 | |
84 |
![]() |
-1.44358 | -1.7818 | -0.674689 | -0.650166 | -0.654587 | |
85 |
![]() |
-0.942948 | -0.667168 | -0.655229 | |||
86 |
![]() |
-0.982503 | -1.10231 | -0.63956 | -0.767192 | -0.676455 | |
87 |
![]() |
-0.429599 | -0.370913 | -0.844833 | -0.765916 | -0.744556 | |
88 |
![]() |
-0.633554 | -0.744963 | ||||
89 |
![]() |
-0.616658 | -0.51908 | -0.690631 | -0.705736 | -0.747829 | |
90 |
![]() |
-1.29791 | -0.99785 | -0.767797 | |||
91 |
![]() |
-0.438195 | -0.468412 | -0.768715 | |||
92 |
![]() |
-0.684933 | -0.542079 | -0.896511 | -0.90769 | -0.781571 | |
93 |
![]() |
-1.67769 | -1.55696 | -0.851358 | -0.767706 | -0.78801 | |
94 |
![]() |
-2.08154 | -1.77252 | -1.01136 | -0.937221 | -0.811671 | |
95 |
![]() |
-1.04674 | -0.844104 | -0.697917 | -0.707958 | -0.811801 | |
96 |
![]() |
-0.873889 | -0.895987 | -0.847152 | |||
97 |
![]() |
-0.719266 | -0.98089 | -0.854269 | |||
98 |
![]() |
-1.03613 | -0.86519 | -0.922811 | -0.935143 | -0.859978 | |
99 |
![]() |
-0.774475 | -0.559651 | -0.877951 | -0.861004 | -0.89235 | |
100 |
![]() |
-0.675039 | -0.730753 | -1.03802 | -1.07835 | -0.898092 | |
101 |
![]() |
-0.530163 | -0.369437 | -1.05527 | -0.972538 | -0.901589 | |
102 |
![]() |
-1.06674 | -1.30875 | -0.768335 | -0.950771 | -0.933232 | |
103 |
![]() |
-0.833422 | -0.963114 | ||||
104 |
![]() |
-1.26778 | -0.965428 | ||||
105 |
![]() |
-1.34438 | -0.912604 | -0.757001 | -0.97195 | ||
106 |
![]() |
-0.69924 | -0.841034 | -1.0069 | -0.814567 | -1.01371 | |
107 |
![]() |
-0.919298 | -1.03347 | -0.879252 | -0.97857 | -1.01705 | |
108 |
![]() |
-1.16084 | -1.18122 | -1.06538 | -1.06344 | -1.07744 | |
109 |
![]() |
-1.17436 | -1.03731 | -1.10384 | |||
110 |
![]() |
-1.05279 | -1.17654 | -0.965066 | -0.987537 | -1.12772 | |
111 |
![]() |
-1.27263 | -1.47184 | -1.04762 | -1.21682 | -1.15388 | |
112 |
![]() |
-1.48447 | -1.27173 | -1.19506 | |||
113 |
![]() |
-1.06145 | -1.36159 | -1.22477 | |||
114 |
![]() |
-1.22607 | -1.2084 | -1.18598 | -1.18114 | -1.24908 | |
115 |
![]() |
-1.21682 | -1.19835 | -1.25108 | |||
116 |
![]() |
-1.46341 | -1.56239 | -1.31886 | -1.30394 | -1.27445 | |
117 |
![]() |
-1.25745 | -1.16876 | -1.3177 | |||
118 |
![]() |
-0.955061 | -1.00073 | -1.31615 | -1.34285 | -1.33756 | |
119 |
![]() |
-0.904026 | -0.723043 | -1.47629 | -1.44677 | -1.37692 | |
120 |
![]() |
-1.873 | -1.84461 | -1.53738 | -1.63482 | -1.45787 | |
121 |
![]() |
-0.823322 | -0.820193 | -1.49269 | -1.47536 | -1.45882 | |
122 |
![]() |
-2.17828 | -1.22835 | -1.44215 | -1.51688 | ||
123 |
![]() |
-1.17559 | -1.76105 | -1.77822 | -1.71442 | ||
124 |
![]() |
-1.73702 | -1.72001 | -1.60088 | -1.73247 | -1.90268 | |
125 |
![]() |
-1.75799 | -2.00821 | ||||
126 |
![]() |
-0.671987 | -0.462205 | ||||
127 |
![]() |
-0.328879 | -0.381863 | ||||
128 |
![]() |
-0.574288 | -0.790862 | ||||
129 |
![]() |
0.951062 | 0.90581 |